Complexity of Spectrum Activity and Benefits of Reinforcement Learning for Dynamic Channel Selection

Irene Macaluso, Danny Finn, Barış Özgül and Luiz A. DaSilva

Abstract—We explore the question of when learning improves the performance of opportunistic dynamic channel selection by characterizing the primary user (PU) activity using the concept of Lempel-Ziv complexity. We evaluate the effectiveness of a reinforcement learning algorithm by testing it with real spectrum occupancy data collected in the GSM, ISM, and DECT bands. Our results show that learning performance is highly correlated with the level of PU activity and the amount of structure in the use of spectrum. For low levels of PU activity and/or high complexity in its utilization of channels, reinforcement learning performs no better than simple random channel selection. We suggest that Lempel-Ziv complexity might be one of the features considered by a cognitive radio when deciding which channels to opportunistically explore.

Index Terms—Dynamic spectrum access, reinforcement learning, Lempel-Ziv complexity.

I. INTRODUCTION

Learning has been a core idea in cognitive radio since its origin, as one of the steps in the cognition cycle proposed by Mitola. The intuition behind it is that by learning (about current uses of the spectrum, about channel conditions, even about a user’s intentions) a radio should be able to better navigate the increasingly complex wireless environment. In this paper, we explore the question of when it is advantageous to bring the power of machine learning to bear on the problem of dynamic channel selection (DCS). In particular, we focus on the reinforcement learning (RL) paradigm, which allows agents to autonomously discover the mapping between situations and actions through a mechanism of trial and error.

Machine learning performs sustained observation of an environment and task and identifies patterns in these observations. In applying RL to dynamic spectrum access (DSA) we must first determine whether the observable spectrum utilization contains enough structure, over an appropriate time scale, to be captured by a learning process. We must also ask ourselves whether RL is justified or whether simpler forms of adaptation suffice. Our objective is to answer these two questions relying on real traces of spectrum use.

To study the first question above, we characterize the observability of spectrum utilization through the prism of Lempel-Ziv (LZ) complexity. To answer the second question, we compare the outcome of RL against the performance of a simple random channel selection scheme. We find out that, in a variety of frequency bands (namely, the 2.4 GHz ISM band, the DECT band, and the GSM900 and GSM1800 bands) the application of RL can be advantageous, but its performance benefits are highly correlated with the level of primary user (PU) activity observed and the amount of structure in these observations, estimated by the LZ complexity. In particular, our study shows that the LZ complexity of the PU’s behavior can account for up to a 30% of difference in the probability of success of RL. This result does not just highlight the truism that the effectiveness of learning depends on the level of regularity of the PU activity. It also shows the importance of analyzing the performance of RL algorithms applied to DCS with respect to the complexity of the PU’s activity, a feature that has been overlooked in previous research in DSA. Our results show that the proposed measure of complexity is a theoretically sound and practical metric for predicting the effectiveness of RL for DCS. Moreover the same complexity measure plays a significant role in determining the impact of the number of observed channels on the RL performance.

The research presented in this paper can be situated within the broader perspective of the effectiveness of spectrum reuse mechanisms. This topic has been identified as an open research question in [1]. The primary contributions of this paper are to:

- Explore the effectiveness of reinforcement learning applied to dynamic channel selection, relying on actual spectrum measurement data;
- Determine the relationship between the effectiveness of learning and the predictability of spectrum use by the PU, using the LZ complexity, both empirically and theoretically; and
- Determine the relationship between the number of observed channels, the performance of learning and the complexity of the PU’s activity.

We begin with a brief discussion of the state of the literature on learning and dynamic spectrum access in section II. Section III describes our application of the LZ complexity to characterize PU activity in the bands of interest. Our core results are in section IV: this section presents the relationship between the effectiveness of reinforcement learning by the secondary user (SU) and the amount of structure in the usage...
of the bands by the PU. Section V presents the analysis of the impact of the number of observed channels on the performance of learning taking into account the complexity of the PU’s activity. Section VI describes the effect that the learned policy has on subsequent SUs attempting to access the same set of channels. We summarize our conclusions and point towards directions for future work in section VII.

II. RELATED WORK

In this paper we study the problem of dynamic channel selection in a vertical spectrum sharing environment. In opportunistically occupying temporarily vacant channels, secondary users attempt to optimize their throughput whilst maintaining their level of interference to the primary user below a certain bound.

Machine learning has been widely applied to DSA [2], [3], [4]. Much of the previous analysis of the effectiveness of machine learning algorithms in DSA relies on simplified theoretical models of PU activity. In some cases, spectrum utilization from one instant in time to the next is assumed to be independent and identically distributed (i.i.d) [2], [3]. This assumption does not take into account the likely sequential patterns in the observations, and should be adopted only when either the analysis of the observed data confirms it or when the corresponding theoretical conditions are clearly satisfied.

In other works on DSA, the PU activity is often assumed to satisfy the Markov property [4], [5], [6]. A first order Markov model is often selected, as the parameter space increases exponentially with the order of the model. These models are mathematically tractable, but again it is important to validate their realism against actual measurement data. In our investigation, we rely instead on real spectrum data collected at RWTH Aachen [7] and by us at Trinity College Dublin (TCD).

There is some work in the cognitive radio literature that relies on empirical measurements to model channel activity. In [8] the authors make use of base station traffic logs collected by a GSM band network operator. Call arrival times and durations, as well as location-based patterns in network usage, were modeled. Here it was observed that the conventional modeling of call duration based on an exponential distribution did not apply. In [9] the authors used a traffic generator to load a WLAN and then characterized the resulting spectrum occupancy. In this case, it was found that a continuous-time semi-Markov model was effective in modeling idle periods between bursty transmissions. In [10] the authors verified the adherence to the Markov property for spectrum measurements collected in the paging band (928-948MHz). Most recently, the group at RWTH Aachen University [7], on whose measurements we rely, have derived stochastic models for PU duty cycle. These measurements consist of spectrum measurements of the wireless environment in the range of 20MHz to 6GHz. In [11] the authors used this dataset to validate the Beta distribution assumption for modeling channel occupancy. In [12] the authors used the RWTH Aachen dataset to study the effectiveness of opportunistic spectrum access mechanisms with and without knowledge of PU activity patterns. The authors observed how the extracted spectrum, i.e. the effectiveness of the spectrum access mechanism, is only weakly related to the average spectrum availability. Our work, while confirming this result, moves one step further in proposing a metric to quantify the effects of different levels of regularity in spectrum usage on the performance of spectrum access mechanisms that are based on learning. In [13] we discussed the idea of using Lempel-Ziv complexity to recognize spectrum bands that present an opportunity to be exploited.

III. APPLICATION OF LEMPEL-ZIV COMPLEXITY TO PRIMARY USER ACTIVITY

Dynamic channel selection algorithms are usually characterized with respect to the duty cycle of the channels, i.e. they are evaluated with respect to the probability of the presence of PUs. Intuitively, the more activity PUs produce, the harder the DCS for SUs will be. However, when using machine learning, the traffic load is not sufficient to characterize the performance of a given DCS algorithm. In fact, the performance of a learning algorithm is influenced by the amount of structure in the data from which the algorithm is learning. In the particular case of an SU attempting to learn about the availability of channels, the success of the learning algorithm is affected by the amount of structure contained in the PU’s activity pattern. The more structured the data is, the more effective we can expect a learning algorithm to be. Therefore, measuring the amount of structure in channel availability, or its complexity, is of primary importance in assessing the usefulness of retaining past information to make better decisions in the future.

In this paper we quantitatively characterize the structure of a spectrum occupancy sequence by making use of a measure of complexity proposed by Lempel and Ziv [14]. In particular, we adopted the normalized Lempel-Ziv complexity, which measures the rate of production of new patterns in a sequence. Lempel and Ziv associated to every sequence a complexity coefficient c which is computed by scanning the sequence and incrementing c every time a new substring of consecutive symbols is found. Then c is normalized via the asymptotic limit $n/\log_2(n)$, where n is the length of the sequence [15]. Lempel-Ziv complexity is a property of individual sequences and it can be computed without making any assumptions about the underlying process that generated the data. This feature is of the utmost importance when one is dealing with real data (in our case, sensed channel status in a variety of frequency bands). Furthermore, LZ complexity is strongly related to the source entropy. In fact, if the source is ergodic, the normalized LZ complexity has been proven [16] to be equal to the source entropy almost surely.

In section IV we will illustrate the relationship between the LZ complexity of the primary users’ behavior and the level of accuracy a learning algorithm for DCS achieves. We first studied synthetic data (see section IV-A) which, by construction, carries a certain complexity degree and PU activity levels. As the synthetic data is generated by an ergodic stochastic process, the equality between the normalized LZ complexity and the entropy rate of the source can be exploited to analytically select a range of source processes corresponding to the intended levels of PU complexity. In section IV-B
we conducted the same analysis using real spectrum occupancy data. We argue that the adopted measure of complexity provides an effective and new angle for analyzing the learning performance for DCS. Finally in section IV-C we presented a theoretical proof of the relationship between the entropy rate of the process that describes channel occupancy and the effectiveness of RL applied to DCS.

IV. A STUDY ON THE EFFECTIVENESS OF REINFORCEMENT LEARNING FOR DCS

A learning algorithm applied to DCS aims at exploiting the spectrum occupancy history in order to make better decisions in the future. Reinforcement learning (RL) [17] has been one of the favorite choices for dynamic spectrum access applications [4], [6], [18]. In almost all cases, the performance of the proposed solutions has been studied with respect to PU activity levels. To the best of our knowledge, only [4] points out that the same PU activity level may result in different performance of RL, but the authors do not discuss what causes those differences. Below we will show that the effectiveness of an RL algorithm applied to DCS is strongly correlated with the LZ complexity of the sequence describing PU activity on the channels to be used opportunistically. Our model considers a single SU that can use one of N equal-bandwidth frequency channels opportunistically. Time is slotted and alternates between a sensing phase and a transmission phase. The SU is allowed to transmit in the time slot if the channel it selected in the sensing phase is still free. We consider a perfect sensing scenario where the local measures and alternates between a sensing phase and a transmission phase. The SU is allowed to transmit in the time slot if the channel it selected in the sensing phase is still free. We consider a perfect sensing scenario where the local measures performed by the SU exactly represent the PU’s activity. The SU’s choice of which channel to attempt transmission in is made according to the policy determined by an RL algorithm. Full observability of the channels is assumed, and therefore, Q-learning [19] is the most natural candidate. Moreover, as Q-learning does not require a model of the agent’s environment, it is suitable to deal with real spectrum occupancy data.

The goal of Q-learning is to find an optimal policy, i.e. the sequence of actions that maximizes the expected sum of discounted rewards. The agent state at time t is given by $s_t = [X_{1,t}, \ldots, X_{N,t}, c_t]$, where $X_{i,t} \in \{0, 1\}$ indicates whether the i^{th} channel is free (0) or occupied (1) and $c_t \in \{1, \ldots, N\}$ is the index of the channel the SU is accessing at time t. At time t the SU performs an action $a_t \in \{1, \ldots, N\}$, i.e. it selects a channel c_{t+1}. At time $t+1$ it receives a reward $r(t+1)(s_t, a_t)$:

$$r(t+1)(s_t, a_t) = (1 - X_{a_t,t+1}) - e(1 - a_t,c_t)$$

(1)

where $1_{a_t,c_t}$ is 0 if $a_t = c_t$ and 1 otherwise, and $e \in [0, 0.5]$. In other words the SU is rewarded if it selects a free channel, while a cost of switching channels is also included to discourage too frequent channel changes. Based on the received reward, the agent updates the Q-values [19]:

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r(t+1) + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

(2)

where $0 \leq \gamma < 1$ is the discount factor and α is the learning rate. A value of γ different from 0 allows the agent to take into account the delayed reward when it selects an action.

In a stationary environment Q-learning is proven to converge to the optimal policy if $\alpha \to 0$ and all the state-action pairs are visited an infinite number of times. During the learning stage, an exploration strategy is required to allow the agent to visit all the state-action pairs. A randomized strategy is commonly adopted: the agent selects a random action with a probability ϵ and the best estimated action with probability $1 - \epsilon$. At the beginning the algorithm starts with a large value of ϵ, which decreases as the Q-learning converges. For the experiments with the real spectrum occupancy data, the stationarity condition is generally not satisfied. Therefore we fix the learning factor to 0.1 to allow the agent to adapt to the changes in the environment. Moreover, in order to discover changes in the environment, the agent must be allowed to perform exploratory actions from time to time. Therefore we set the ϵ-value to 0.01. In the case of synthetic data, both ϵ and α decrease linearly with the time step.

A. Reinforcement Learning with Synthetic Data

Our goal here is to study the effect of both the levels of PU activity and the complexity of the PU behavior as defined in section III. To generate the synthetic data we modeled the N channels as independent random variables. Each channel is the realization of a 2-state first order Markov chain (MC). Therefore we generated MCs with different values of stationary distribution and LZ complexity. For a homogeneous MC, the stationary distribution δ satisfies (3) and (4).

$$\delta_0 = \frac{1 - p_{11}}{(1 - p_{00}) + (1 - p_{11})}$$

(3)

$$\delta_1 = \frac{1 - p_{00}}{(1 - p_{00}) + (1 - p_{11})}$$

(4)

where $P = (p_{00} p_{01} p_{10} p_{11})$ is the transition probability matrix.

As previously observed, for an ergodic source the Lempel-Ziv complexity equals the entropy rate of the source, which for a Markov chain X is given by:

$$h(X) = -\sum_{ij} \delta_i p_{ij} \log p_{ij}.$$

(5)

It is easy to verify that (3) and (4) constitute an undetermined system in the two unknowns p_{00} and p_{11} corresponding to:

$$\delta_0 p_{00} + (\delta_0 - 1)p_{11} = 2\delta_0 - 1.$$

(6)

In principle we could fix the stationary distribution and the entropy rate and then compute the corresponding Markov transition probability matrix using equations (5) and (6). However, the result will be a transcendental equation which is hard to solve. To sidestep this we fixed the stationary distribution δ_0 and for each value of it we considered a range of values for either p_{11} or p_{00} and then we computed the corresponding p_{00} or p_{11}. In other words, we calculated several entropy rates for each value of the stationary distribution.

We considered 9 possible δ_0 values in the range 0.1, . . . , 0.9. For each of these values, we considered p_{11} (or p_{00}) values of 0.1, 0.3, 0.5, 0.7, 0.9 if $\delta_0 >= 0.5$ (if $\delta_0 < 0.5$), obtaining 45 different transition probability matrices. Finally Q-learning
has been applied to all the possible combinations of \(N = 3 \) channels over the 45 possible transition matrices.

Figure 1(a) shows the probability of success obtained by Q-learning as a function of the average entropy rate and the probability \(p_f \) of at least one free channel existing, defined as:

\[
p_f = 1 - \prod_{i=1}^{N} \delta_{1,i}
\]

where \(\delta_{1,i} \) is the stationary distribution of the \(i^{th} \) channel.

Each point in the figure corresponds to one instance of the RL problem. For each instance, we run \(10^2 \) independent simulations. For each simulation, first the optimal policy is computed using the Q-learning algorithm, then the resulting policy is evaluated over \(10^4 \) trials of \(10^4 \) time steps each. For each trial the probability of success is computed according to the number of times that a free channel was selected over the length of the trial. Each point in Figure 1(a) represents the average of the results obtained for each of the \(10^4 \) experiments. As expected, the probability of success increases with \(p_f \). However, it can be observed that the performance of RL is also strongly dependent on the complexity of the PU behaviors. For a certain value of \(p_f \), the variation of the probability of success is up to 30%.

Figure 1(b) shows the difference between the probability of success of RL (\(P_{\text{RL_suc}} \)) and the probability of success of a random channel selection (\(P_{\text{RCS_suc}} \)) approach. Although RL always outperforms RCS, the difference in performance becomes negligible not only when the \(p_f \) is large, but also when LZ complexity increases. Indeed it was to be expected that a random action selection algorithm is not influenced by the complexity of the PU behaviors. For a given \(p_f \), \(P_{\text{RL_suc}} \) decreases when LZ complexity increases, while \(P_{\text{RCS_suc}} \) remains almost constant. Therefore the performance gain of RL becomes less significant when LZ complexity increases. It is worth noting that for a given LZ complexity, the performance gain of RL increases with \(p_f \) up to a certain point; thereafter the performance of RCS approaches the performance of RL.

B. Reinforcement Learning with Measurement Data

In order to analyze whether the relationship between LZ complexity and the performance of RL for DCS also holds for real spectrum data, we relied on spectrum measurements conducted at RWTH Aachen [7], in frequency bands ranging from 20 MHz to 6 GHz, and by us at TCD. The RWTH Aachen measurements were recorded using an Agilent E4440A spectrum analyzer set to a resolution bandwidth of 200 kHz [7]. The measurements we recorded in TCD were taken in the ISM band from 2.401 GHz to 2.433 GHz, in an indoor location. These measurements were recorded using an Anritsu MS2721B handheld spectrum analyzer set to a resolution bandwidth of 200 kHz.

We considered a number of frequency bands: the 2.4 GHz ISM band, the DECT band, and the GSM900 and GSM1800 bands. For each band, Q-learning was applied to all the possible combinations of \(N = 3 \) channels with duty cycle \(DC \in [0.3, 0.8] \). In particular, we considered sequences of spectrum occupancy over 12 hours (from 11:00 to 23:00) for both the RWTH and the TCD datasets. Channels with a lower DC were not considered because the resulting DCS is unproblematic and even a random policy will exhibit nearly-optimal performance. On the other hand, channels with a too high DC were not considered because their exploitation will not result in a significant contribution for any kind of DCS approach. To convert the power spectral density estimates into binary occupancy sequences we used a threshold of \(-107 \) dBm or \(-100 \) dBm for indoor and outdoor locations respectively, as discussed in a previous analysis of the RWTH Aachen measurements [7]. Figure 2 illustrates the duty cycle DC of the PU activity over a single day in the indoor location for the
GSM 900, GSM 1800, DECT and ISM 2.4 GHz frequency bands. The DC is displayed for sampled time periods of 1000 samples, equivalent to roughly 30 minutes.

Each combination of channels corresponds to one instance of the RL problem. For each instance, we run 10^3 independent simulations. For each simulation, first the optimal policy is computed using the Q-learning algorithm considering only the first hour of the sequences of spectrum occupancy, then the resulting policy is evaluated over the remaining 11 hours. For each simulation the probability of success is computed according to the number of times that a free channel was selected over the length of the spectrum occupancy sequences. The probability of success of each RL instance is the average over the 10^3 simulations. Analogously, the probability of success of a random channel selection (P_{suc}^{Rand}) approach is computed as the number of times that a free channel was selected by the random channel selection (RCS) scheme over the length of the spectrum occupancy sequences, averaged over 10^5 simulations. Figures 3(a) and 4(a) show the probability of success obtained by Q-learning as a function of LZ complexity and p_f for all the possible combinations of channels in the ISM band and the GSM1800 bands respectively. The probability p_f is computed according to (7), where the duty cycle of each channel is used as an estimate of the stationary distribution. The LZ complexity of each channel is computed using the algorithm described in [15], while the average value is used as an approximation of the complexity of each combination of channels.

For the ISM band (see Figure 3(a) and 3(b)), the values for the average LZ complexity span a considerable range and we can easily observe that, when p_f remains constant, the RL performance decreases when LZ complexity increases. Moreover the difference in performance between RL and RCS is up to 30% when the average LZ complexity is low. This is consistent with the results shown for synthetic data. It should be noted that both the average LZ complexity and p_f do not cover the same range for each band. For example, for the DECT band, the average LZ complexity is always greater than 0.93. Accordingly, the P_{suc}^{RL} is only moderate, and the difference in performance between RL and RCS is never greater than 10%. The GSM900 and GSM1800 bands present intermediate values of average LZ complexity and P_{suc}^{RL} correspondingly. It can be observed in Figure 4(a) that in the case of the GSM1800 band the P_{suc}^{RL} is always smaller than
stationarity effects, we considered a sufficiently small analysis state first order Markov chain. To remove the probable non-autocorrelation function of the corresponding (estimated) 2
holds, we compared the sample autocorrelation function of the Markov property. To verify whether the Markov property underlying assumption is that the environment satisfies the does not require a model of the agent’s environment, the explained by considering two factors. Although Q-learning corresponding performance for synthetic data. This can be of RL for real spectrum data is usually lower than the metric for the analysis of learning performance. RL and RCS, confirming that the LZ complexity is a valid

window of two hours for the estimation of both the sample autocorrelation and the Markov chain. For almost all the spectrum occupancy sequences it can be observed that, as the lag increases, the sample autocorrelation deviates significantly from the theoretical one. Moreover, due to the nonstationarity of the spectrum data, both the learning factor α and the exploration coefficient ε do not converge to zero. This way, Q-learning is able to track the changes in the environment; the cost to be paid is a certain amount of inefficiency due to the necessary random exploration the algorithm has to perform.

C. Theoretical analysis

In this section we conduct a theoretical study of the relationship between the entropy rate of the Markov chain that models the PU’s behavior and the performance of RL, which confirms our empirical findings. Let us denote by \(E^* [\gamma] \) the expected reward of an SU that selects a channel according to the optimal policy estimated by Q-learning using the reinforcement scheme in (1).

Theorem 1. If each of the \(N \) channels is the realization of a 2–state first order Markov chain \(\{ p_{00}, 1 - p_{00} \} \) and the discount factor \(\gamma = 0 \), for any given stationary distribution \([\delta_0, \delta_1] \) of the Markov chain, the \(\max \) of the entropy rate of the Markov chain is one of the points for which \(E^* [\gamma] \) has a global minimum (when the cost of switching channels \(e \in (0, 0.5) \)).

Proof: For any given stationary distribution, the entropy rate has a unique global maximum at \(p_{00} = \delta_0 \). This can be verified by expressing the entropy rate as a function of \(p_{00} \) using (3) and then writing its first derivative with respect to \(p_{00} \):

\[
\frac{dh}{dp_{00}} = -\delta_0 \left(\log_2 \left(\frac{p_{00}}{1 - p_{00}} \right) + \log_2 \left(\frac{2\delta_0 - 1 - \delta_0 p_{00}}{\delta_0 (p_{00} - 1)} \right) \right).
\]

(8)
Corollary 1. If $e = 0$ and $\gamma = 0$, $E^*[r]$ has a unique global minimum at $p_{00} = \delta_0$.

Proof: In this case the optimal expected reward simplifies in (11) which has a unique global minimum at $p_{00} = \delta_0$.

The maximum of the entropy rate, which coincides with the LZ complexity for an ergodic source, and the minimum of the optimal expected reward occur for the same value $p_{00} = \delta_0$, confirming the relationship between the LZ complexity and the Q-learning performance.

Although the theoretical analysis presented in this section applies only to myopic agents, i.e. agents that only seek to maximize the immediate reward ($\gamma = 0$), it should be noted that the results shown in the figures in Section IV refer to $\gamma = 0.9$. Moreover, we run the same experiments discussed in sections IV-A and IV-B using a range of values for γ and the results always exhibit the same kind of relationship between average LZ complexity, p_f and the performance of RL.

D. Predicting RL performance for DCS

In the previous sections we analyzed the performance of RL with respect to two features, namely the DC - expressed in terms of p_f - and the LZ complexity of a set of channels. We now turn our attention to using these two features in a proactive way and we show that a cognitive radio can predict the probability of success of RL given the DC and LZ complexity of a set of observed channels, and hence decide whether to adopt RL for DCS.

No definite black-and-white boundary can be given to separate situations, i.e. channel activities, where learning is advantageous from situations where it is not, as this boundary depends on the SU’s requirements. However, if we assume that the SU’s requirements can be expressed in terms of the probability of success of accessing a free channel, it is possible to exploit the results discussed above to design a procedure that allows a cognitive radio to make such decision.

In the remainder of this section we assume that an SU can observe $N = 3$ channels and can estimate the corresponding LZ complexity and DC values. Predicting the $P_{\text{suc}}^{\text{RL}}$ given the DC and the LZ complexity of a set of channels can be cast as a regression problem, which we addressed by using a feed-forward neural network with a single hidden layer of 10 units. We trained the network over the dataset described in Section IV-A using the Levenberg-Marquardt algorithm [20]. We used 70% of the 14190 channels sets as training data, 15% as validation data, and the remaining 15% as test data (test set 1). The inputs to the network are the DC and LZ complexity values of the 3 channels; the output is the corresponding $P_{\text{suc}}^{\text{RL}}$. Moreover, to further test the prediction accuracy of the network, we generated additional MCs corresponding to stationary distributions not included in the dataset described in Section IV-A. We considered 8 additional possible δ_0 values in the range $0.15, 0.25, \ldots, 0.85$. For each of these values, we considered p_{11} (or p_{00}) values of $0.2, 0.4, 0.6, 0.8$ if $\delta_0 > 0.5$ (if $\delta_0 < 0.5$), obtaining 32 different transition probability matrices. Finally Q-learning has been applied to all the possible combinations of $N = 3$ channels over the 32 possible transition matrices. The resulting $\binom{32}{3} = 4960$
channels sets and their corresponding P_{suc}^{RL}, estimated by averaging the results of 10^2 independent simulations, were used to test the network accuracy (test set 2).

Figure 5 shows the histogram of the error values, where the error is the difference between the actual P_{suc}^{RL} and the output of the network. It can be observed that the prediction accuracy of the neural network is extremely high. Indeed in 93% of the instances the difference between the network output and the actual P_{suc} is less than 2.5% for both test sets. This result shows that the neural network is able to accurately predict the P_{suc} even when presented with channels exhibiting new values of stationary distributions and complexity. Hence, an SU can reliably decide whether to adopt RL for DCS by comparing the predicted P_{suc}^{RL} with its minimum required performance.

V. ON THE IMPACT OF THE NUMBER OF OBSERVED CHANNELS ON THE RL PERFORMANCE

In this section we analyse the impact the number N of channels that the cognitive radio observes has on the performance of RL. We will also analyse the relationship between N and the entropy rate.

Theorem 2. If each of the N channels is the realization of a 2–state first order Markov chain \(\begin{pmatrix} p_{00} & 1-p_{00} \\ 1-p_{11} & p_{11} \end{pmatrix} \) and the discount factor $\gamma = 0$, for any given stationary distribution \(\pi_0, \pi_1 \) of the Markov chain, then the $E^*[r]$ does not decrease with N (when the cost of switching channels $e \in (0, 1.0)$). The increment of $E^*[r]$ is either null or it decreases exponentially with N.

Corollary 2. If $e = 0$ and $\gamma = 0$, $E^*[r]$ increases with N and its increment decreases exponentially with N.

The proofs can be found in the Appendix.

The most interesting aspect of the above result is that the performance improvement that a cognitive radio can achieve by increasing the number of sensed channels exponentially decreases to zero. This result has at least two important consequences. First, limiting the number of channels a cognitive radio observes impacts the amount of resources devoted to the sensing stage. For example, this implies the possibility of using less sophisticated hardware in the radio front-end as well as a reduction of the energy consumption of the sensing stage. Second, a reduced cardinality of the action space and the state space $(N$ and N^2N respectively, assuming a not null cost of switching channel) results in a faster convergence of the learning algorithm.

Figure 6(a) shows the optimal expected reward as a function of the entropy rate corresponding to various numbers of observed channels when no cost of switching channel is assumed. Each of the N channels is the realization of a 2–state first order Markov chain with stationary distribution $\delta = [0.5, 0.5]$. We can observe that the increment $\Delta E^*[r_N]$ of the optimal expected reward quickly becomes modest. Figure 6(b) shows the same result when the cost of switching channels is $e = 0.5$. When the entropy rate exceeds a threshold, which depends on the cost of switching, the radio does not benefit from switching and the expected optimal reward is equal to the stationary distribution of the Markov chain independently on the number of channels (see horizontal line segment in Figure 6(b)).

When the entropy rate decreases, the expected optimal reward increases and its increment $\Delta E^*[r_N]$ with respect to the number of observed channels decreases exponentially with N, according to what we already observed for the case with no cost of switching. The relationship between $\Delta E^*[r_N]$ and the
entropy rate is formalized in the following theorem, whose proof is given in the Appendix.

Theorem 3. If each of the \(N \) channels is the realization of a 2-state first order Markov chain \(\left(\frac{1 - p_{i1}}{p_{i0}}, \frac{1 - p_{10}}{p_{11}} \right) \) and the discount factor \(\gamma = 0 \), for any given stationary distribution \([\delta_0, \delta_1] \) of the Markov chain and for any \(N \), the arg max of the entropy rate of the Markov chain is one of the points for which the \(\Delta E^* \{ r_N \} \) has a global minimum (when the cost of switching channels \(e \in \{0.0, 1.0\} \)).

VI. ON THE IMPACT OF RL ON SUBSEQUENT CHANNELS EXPLOITATION

The analysis discussed in this section focuses on a scenario where multiple SUs are operating, but they do not simultaneously start the learning process. In particular, an additional SU becomes active only after previous SUs have reached a stationary policy. This way, the problem we address remains in the domain of single-agent RL.

Multi-agent RL (MARL) evolved from the single-agent setting. One possibility that has been widely investigated [21] is that of “independent Q-learning”, where each agent uses the traditional Q-learning algorithm while ignoring the presence of the other agents acting in the same environment and considering the results of this interaction as noise. However, the convergence result no longer holds due to the non-stationarity of the environment caused by the dynamics of the other agents operating in the same environment. As a result, in some cases the agents may exhibit cyclic behavior. Various attempts have been made to find a different paradigm for MARL. In particular, the MARL problem has been modeled as a stochastic game. The reader is referred to [22] for an example of such approaches. A common issue with many of these approaches is that a coordination mechanism is required for all but a restricted class of games where all the agents achieve the maximum expected return in correspondence to the same Nash equilibrium.

A number of MARL algorithms have also been proposed that can only deal with repeated stateless games (see [21] and references therein). In the CR literature independent Q-learning has also been used in this fashion [23]. In the case of repeated games, other RL schemes, such as learning automata [24], can also be adopted. A learning automaton is a reinforcement learning scheme where each agent directly updates its action probabilities based on the environment response. We have recently applied learning automata to the problem of distributed channel selection in a cognitive radio network in the context of frequency-agile radios that are able to operate in multiple frequency bands simultaneously [25]. We formulated the problem as an N-player stochastic game and we proved that, by adopting learning automata, radios will converge to a Nash equilibrium, under the assumption of symmetric interference between the players.

In the remainder of this section we focus our attention on how the policy learned by the SU affects the channels’ characteristics. This in turn affects the performance of subsequent SUs trying to access the same set of channels.

We considered a number of combinations of \(N = 3 \) channels characterized by the same level of PU activity (\(\delta_0 = 0.5 \)) and a range of values of entropy rate. For each combination of channels we run \(10^5 \) independent simulations. As in section IV-A, first the optimal policy is computed, then the learned policy is evaluated over \(10^4 \) independent trials. Each resulting sequences of spectrum occupancy \(X_{i,t} \) of a channel \(i \) are then used to compute the maximum likelihood estimate of the transition probability matrix of a first order Markov model. The estimated MCs summarize the activity on the channels of both the PUs and the SU. For each set of channels an additional SU has been trained using the estimated MCs to model the channels activity. This means that, from the additional SU’s point of view, there’s no difference between dealing with PUs and SUs or PUs only: it has to learn to select a channel that is free from both PU’s and other SU’s activity.

Figure 7 represents the evolution of the LZ complexity and the \(p_f \) of various combination of channels in correspondence to the activity of PUs only, PUs and one SU, PUs and two SUs. Each circle in Figure 7 corresponds to one combination of channels used only by PUs. Asterisks denote the LZ complexity and the \(p_f \) of a set of channels when an SU executes the learned policy. Finally, squares correspond to the channels’ characteristics observed when the PUs and both SUs are active.

The complexity of the channel activity resulting from the combined exploitation shows a narrower range of values with respect to the initial values. This can be explained by considering that the range of values allowed for the entropy rate depends on the stationary distribution of the MC (i.e. the \(p_f \)), and that the entropy rate exhibits the full range of values in correspondence to a stationary distribution \(\delta = [0.5, 0.5] \).
\[E^* \[r \] = E^* \[r_N \] = \begin{cases} p_{00} - \delta_1^N (p_{00} - 1 + p_{11}) & \text{if } p_{00} \geq \delta_0 + e\delta_1 \\ \frac{1}{N} \sum_{n=1}^{N-1} N! \delta_1^n \delta_0^{N-n} & \text{if } p_{00} \leq \delta_0 - e\delta_1 \\ p_{00} - \delta_1^N (p_{00} - 1 + p_{11}) + \frac{1}{N} \sum_{n=1}^{N-1} N! \delta_1^n \delta_0^{N-n} (1 - p_{00} - p_{11}) & \text{if } p_{00} \in [\delta_0 - e\delta_1, \delta_0 + e\delta_1] \end{cases} \]

The squares in Figure 7 correspond to the combined activity of the PUs, an SU executing the policy learned to coexist with the PUs, and an additional SU performing the policy learned to coexist with the PUs and the former SU. As expected, the \(P_{\text{suc}}^{\text{RL}} \) of the additional SU decreases, in accordance with the lower values of \(p_f \). The most interesting aspect of the above results is that the complexity values overall decrease as the exploitation of the channels increase, i.e. when more SUs start using the channels.

VII. CONCLUSIONS AND FUTURE WORK

While the adoption of learning algorithms is often assumed to be beneficial to SUs seeking to use channels opportunistically, in this paper we show that these benefits depend strongly on the pattern of utilization of channels by the PU. For this purpose, four frequency bands (ISM 2.4 GHz, GSM900, GSM1800, and DECT) are taken into account, and we show that RL is beneficial, but only for some levels of PU activity and complexity. Although the regularities of the channels’ utilization doubtlessly influence the performance of learning for DCS, this aspect has not been investigated in previous research in DSA. Our study shows that the LZ complexity is a valid measure to quantify those regularities both for experimental utilization data and for data generated by idealized mathematical models of PU activity.

We suggest that the same approach can also be used by cognitive radios in a proactive way and our study shows that a cognitive radio could use LZ complexity to decide whether learning is the appropriate tool to utilize in a given situation. In this respect, we are currently investigating the usage of the LZ complexity as a feature that a cognitive radio could employ to focus its resources on a subset of channels that exhibit a more structured pattern of activity. No definite black-and-white boundary can be given to separate situations, i.e. channel activity, where learning is advantageous from situations where it is not, as this boundary depends on the SU’s requirements. Consider, for example, an SU that is connected to a machine-to-machine application and assume that it can attempt to opportunistically exploit a set of channels each exhibiting a DC= 0.5 and high values of complexity. As this type of SU can adjust its traffic schedule to suit the variances in a given band, it might be sufficient in this case to exploit only one channel, i.e. obtaining a \(P_{\text{suc}} = 0.5 \), without employing any learning technique. However, for a different SU connected to a time-sensitive application the same value of \(P_{\text{suc}} \) could be insufficient and even the small improvement provided by RL in correspondence to high values of complexity would be considered necessary.

APPENDIX

A. Theorem 2

Proof: After some manipulations, the optimal expected reward in (9) can be written as in (12) at the top of the page, where the notation makes explicit the dependence of \(E^* [r] \) on the number of observed channels \(N \).

By exploiting the binomial theorem, the first equation in (12) simplifies to:

\[
\begin{align*}
p_{00} - \delta_1^N (p_{00} - 1 + p_{11}) &= \frac{1}{N} \sum_{n=1}^{N-1} N! \delta_1^n \delta_0^{N-n} (N - n)! \\
&= p_{00} - \delta_1^N (p_{00} - 1 + p_{11}) - e\delta_1 (N - 1) \delta_1^{N-1} \delta_0^{N-n} \\
&= p_{00} - \delta_1^N (p_{00} - 1 + p_{11}) - e\delta_1 (1 - \delta_1^{N-1})
\end{align*}
\]

By analogous manipulations of the second and third equation in (12), we can write the variation of the optimal expected reward with respect to \(N \) as:

\[
\Delta E^* [r_N] = \begin{cases} \delta_1 \delta_0^N (p_{11} + p_{00} - 1 - e) & \text{if } p_{00} \geq \delta_0 + e\delta_1 \\ \delta_1 \delta_0^N (1 - \delta_0) (p_{00} - p_{11}) & \text{if } p_{00} \leq \delta_0 - e\delta_1 \\ 0 & \text{otherwise} \end{cases}
\]

The first and second equation in (14) are always positive and exponentially decreasing with \(N \).

B. Corollary 2

Proof: In this case, \(\Delta E^* [r_N] \) simplifies to:

\[
\Delta E^* [r_N] = \begin{cases} \delta_1 \delta_0^N (p_{11} + p_{00} - 1 - e) & \text{if } p_{00} \geq \delta_0 \\ \delta_1 \delta_0^N (1 - \delta_0) (1 - p_{00} - p_{11}) & \text{if } p_{00} \leq \delta_0 \end{cases}
\]

which is always positive and exponentially decreasing with \(N \).

C. Theorem 3

Proof: By expressing \(p_{11} \) as a function of \(p_{00} \) using (3), it can be verified that (14) is a continuous function of \(p_{00} \), for any given \(\delta_0 \) and for any \(N \). We can write the first derivative of (14) as:

\[
\frac{d \Delta E^* [r_N]}{dp_{00}} = \begin{cases} \delta_1 \delta_0^{N-1} (1 - \delta_1) & \text{if } p_{00} \geq \delta_0 + e\delta_1 \\ -\delta_1 \delta_0^{N-1} & \text{if } p_{00} \leq \delta_0 - e\delta_1 \\ 0 & \text{if } p_{00} \in [\delta_0 - e\delta_1, \delta_0 + e\delta_1] \end{cases}
\]
As the first, second and third equations in (16) are positive, negative and null respectively, all the points \(p_0 \in [\delta_0 - e\delta_1, \delta_0 + e\delta_1] \) correspond to global minima of the increment of the expected reward. As \(\delta_0 \in [\delta_0 - e\delta_1, \delta_0 + e\delta_1], \) the \(\Delta E^*_{\mathcal{R}_N} \) has a global minimum at \(p_0 = \delta_0. \)

References

